Machine Learning Algorithms: Intuition of using different kinds of algorithms in different tasks
When I was beginning my way in data science, I often faced the problem of choosing the most appropriate algorithm for my specific problem. If you’re like me, when you open some article about machine learning algorithms, you see dozens of detailed descriptions. The paradox is that they don’t ease the choice.
This resource is designed primarily for beginner to intermediate data scientists or analysts who are interested in identifying and applying machine learning algorithms to address the problems of their interest.
A typical question asked by a beginner, when facing a wide variety of machine learning algorithms, is “which algorithm should I use?” The answer to the question varies depending on many factors, including:
- The size, quality, and nature of data.
- The available computational time.
- The urgency of the task.
- What you want to do with the data.
Even an experienced data scientist cannot tell which algorithm will perform the best before trying different algorithms. We are not advocating a one and done approach, but we do hope to provide some guidance on which algorithms to try first depending on some clear factors.
Learn more: Which machine learning algorithm should I use? and Machine Learning Algorithms: Which One to Choose for Your Problem
Become a member
Get the latest news right in your inbox. We never spam!